Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 245
Filter
1.
medRxiv ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38464320

ABSTRACT

Background: Epigenome-wide association studies have revealed multiple DNA methylation sites (CpGs) associated with alcohol consumption, an important lifestyle risk factor for cardiovascular diseases. Results: We generated an alcohol consumption epigenetic risk score (ERS) based on previously reported 144 alcohol-associated CpGs and examined the association of the ERS with systolic blood pressure (SBP), diastolic blood pressure (DBP), and hypertension (HTN) in 3,898 Framingham Heart Study (FHS) participants. We found an association of alcohol intake with the ERS in the meta-analysis with 0.09 units higher ERS per drink consumed per day ( p < 0.0001). Cross-sectional analyses in FHS revealed that a one-unit increment of the ERS was associated with 1.93 mm Hg higher SBP ( p = 4.64E-07), 0.68 mm Hg higher DBP ( p = 0.006), and an odds ratio of 1.78 for HTN ( p < 2E-16). Meta-analysis of the cross-sectional association of the ERS with BP traits in eight independent external cohorts (n = 11,544) showed similar relationships with blood pressure levels, i.e., a one-unit increase in ERS was associated with 0.74 ( p = 0.002) and 0.50 ( p = 0.0006) mm Hg higher SBP and DBP, but could not confirm the association with hypertension. Longitudinal analyses in FHS (n = 3,260) and five independent external cohorts (n = 4,021) showed that the baseline ERS was not associated with a change in blood pressure over time or with incident HTN. Conclusions: Our findings provide proof-of-concept that utilizing an ERS is a useful approach to capture the recent health consequences of lifestyle behaviors such as alcohol consumption.

2.
J Clin Invest ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38483511

ABSTRACT

In lung, thromboxane A2 (TXA2) activates the TP receptor to induce pro-inflammatory and bronchoconstrictor effects. Thus, TP receptor antagonists and TXA2 synthase inhibitors have been tested as potential asthma therapeutics in humans. Th9 cells play key roles in asthma and regulate the lung immune response to allergens. Herein, we found that TXA2 reduces Th9 cell differentiation during allergic lung inflammation. Th9 cells were decreased ~2-fold and airway hyperresponsiveness was attenuated in lungs of allergic mice treated with TXA2. Naïve CD4+ T cell differentiation to Th9 cells and IL-9 production was inhibited dose-dependently by TXA2 in vitro. TP receptor deficient mice had a ~2-fold increase in numbers of Th9 cells in lungs in vivo after OVA exposure compared to wild type (WT) mice. Naïve CD4+ T cells from TP deficient mice exhibited increased Th9 cell differentiation and IL-9 production in vitro compared to CD4+ T cells from WT mice. TXA2 also suppressed Th2 and enhanced Treg differentiation both in vitro and in vivo. Thus, in contrast to its acute, pro-inflammatory effects, TXA2 also has longer-lasting immunosuppressive effects that attenuate the Th9 differentiation that drives asthma progression. These findings may explain the paradoxical failure of anti-thromboxane therapies in the treatment of asthma.

3.
EBioMedicine ; 100: 104956, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199042

ABSTRACT

BACKGROUND: Smoking impacts DNA methylation, but data are lacking on smoking-related differential methylation by sex or dietary intake, recent smoking cessation (<1 year), persistence of differential methylation from in utero smoking exposure, and effects of environmental tobacco smoke (ETS). METHODS: We meta-analysed data from up to 15,014 adults across 5 cohorts with DNA methylation measured in blood using Illumina's EPIC array for current smoking (2560 exposed), quit < 1 year (500 exposed), in utero (286 exposed), and ETS exposure (676 exposed). We also evaluated the interaction of current smoking with sex or diet (fibre, folate, and vitamin C). FINDINGS: Using false discovery rate (FDR < 0.05), 65,857 CpGs were differentially methylated in relation to current smoking, 4025 with recent quitting, 594 with in utero exposure, and 6 with ETS. Most current smoking CpGs attenuated within a year of quitting. CpGs related to in utero exposure in adults were enriched for those previously observed in newborns. Differential methylation by current smoking at 4-71 CpGs may be modified by sex or dietary intake. Nearly half (35-50%) of differentially methylated CpGs on the 450 K array were associated with blood gene expression. Current smoking and in utero smoking CpGs implicated 3049 and 1067 druggable targets, including chemotherapy drugs. INTERPRETATION: Many smoking-related methylation sites were identified with Illumina's EPIC array. Most signals revert to levels observed in never smokers within a year of cessation. Many in utero smoking CpGs persist into adulthood. Smoking-related druggable targets may provide insights into cancer treatment response and shared mechanisms across smoking-related diseases. FUNDING: Intramural Research Program of the National Institutes of Health, Norwegian Ministry of Health and Care Services and the Ministry of Education and Research, Chief Scientist Office of the Scottish Government Health Directorates and the Scottish Funding Council, Medical Research Council UK and the Wellcome Trust.


Subject(s)
Smoking Cessation , Tobacco Smoke Pollution , Adult , Humans , Infant, Newborn , DNA Methylation , Epigenesis, Genetic , Smoking/adverse effects , Smoking/genetics , Tobacco Smoking , CpG Islands
4.
Allergy ; 79(3): 643-655, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38263798

ABSTRACT

BACKGROUND: Adult asthma is complex and incompletely understood. Plasma proteomics is an evolving technique that can both generate biomarkers and provide insights into disease mechanisms. We aimed to identify plasma proteomic signatures of adult asthma. METHODS: Protein abundance in plasma was measured in individuals from the Agricultural Lung Health Study (ALHS) (761 asthma, 1095 non-case) and the Atherosclerosis Risk in Communities study (470 asthma, 10,669 non-case) using the SOMAScan 5K array. Associations with asthma were estimated using covariate adjusted logistic regression and meta-analyzed using inverse-variance weighting. Additionally, in ALHS, we examined phenotypes based on both asthma and seroatopy (asthma with atopy (n = 207), asthma without atopy (n = 554), atopy without asthma (n = 147), compared to neither (n = 948)). RESULTS: Meta-analysis of 4860 proteins identified 115 significantly (FDR<0.05) associated with asthma. Multiple signaling pathways related to airway inflammation and pulmonary injury were enriched (FDR<0.05) among these proteins. A proteomic score generated using machine learning provided predictive value for asthma (AUC = 0.77, 95% CI = 0.75-0.79 in training set; AUC = 0.72, 95% CI = 0.69-0.75 in validation set). Twenty proteins are targeted by approved or investigational drugs for asthma or other conditions, suggesting potential drug repurposing. The combined asthma-atopy phenotype showed significant associations with 20 proteins, including five not identified in the overall asthma analysis. CONCLUSION: This first large-scale proteomics study identified over 100 plasma proteins associated with current asthma in adults. In addition to validating previous associations, we identified many novel proteins that could inform development of diagnostic biomarkers and therapeutic targets in asthma management.


Subject(s)
Asthma , Hypersensitivity, Immediate , Adult , Humans , Proteomics/methods , Asthma/metabolism , Biomarkers , Phenotype , Blood Proteins/genetics
5.
Environ Res ; 243: 117819, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38052359

ABSTRACT

BACKGROUND: Farm work entails a heterogeneous mixture of exposures that vary considerably across farms and farmers. Farm work is associated with various health outcomes, both adverse and beneficial. One mechanism by which farming exposures can impact health is through the microbiome, including the indoor home environment microbiome. It is unknown how individual occupational exposures shape the microbial composition in workers' homes. OBJECTIVES: We investigated associations between farm work activities, including specific tasks and pesticide use, and the indoor microbiome in the homes of 468 male farmers. METHODS: Participants were licensed pesticide applicators, mostly farmers, enrolled in the Agricultural Lung Health Study from 2008 to 2011. Vacuumed dust from participants' bedrooms underwent whole-genome shotgun sequencing for indoor microbiome assessment. Using questionnaire data, we evaluated 6 farm work tasks (processing of either hay, silage, animal feed, fertilizer, or soy/grains, and cleaning grain bins) and 19 pesticide ingredients currently used in the past year, plus 7 banned persistent pesticide ingredients ever used. RESULTS: All 6 work tasks were associated with increased microbial diversity levels, with a positive dose-response for the total number of tasks performed (P = 0.001). All tasks were associated with altered microbial compositions (weighted UniFrac P = 0.001) and with higher abundance of specific microbes, including soil-based commensal microbes such as Haloterrigena. Among the 19 pesticides, current use of glyphosate and past use of lindane were associated with increased microbial diversity (P = 0.02-0.04). Ten currently used pesticides and all 7 banned pesticides were associated with altered microbial composition (P = 0.001-0.04). Six pesticides were associated with differential abundance of certain microbes. DISCUSSION: Different farm activities and exposures can uniquely impact the dust microbiome inside homes. Our work suggests that changes to the home microbiome could serve as one pathway for how occupational exposures impact the health of workers and their cohabitating family members, offering possible future intervention targets.


Subject(s)
Microbiota , Occupational Exposure , Pesticides , Animals , Humans , Male , Farms , Agriculture , Pesticides/analysis , Occupational Exposure/analysis , Dust/analysis
6.
Eur Respir J ; 63(1)2024 01.
Article in English | MEDLINE | ID: mdl-38097206

ABSTRACT

BACKGROUND: Preserved ratio impaired spirometry (PRISm) is defined as a forced expiratory volume in 1 s (FEV1) <80% predicted and FEV1/forced vital capacity ≥0.70. PRISm is associated with respiratory symptoms and comorbidities. Our objective was to discover novel genetic signals for PRISm and see if they provide insight into the pathogenesis of PRISm and associated comorbidities. METHODS: We undertook a genome-wide association study (GWAS) of PRISm in UK Biobank participants (Stage 1), and selected single nucleotide polymorphisms (SNPs) reaching genome-wide significance for replication in 13 cohorts (Stage 2). A combined meta-analysis of Stage 1 and Stage 2 was done to determine top SNPs. We used cross-trait linkage disequilibrium score regression to estimate genome-wide genetic correlation between PRISm and pulmonary and extrapulmonary traits. Phenome-wide association studies of top SNPs were performed. RESULTS: 22 signals reached significance in the joint meta-analysis, including four signals novel for lung function. A strong genome-wide genetic correlation (rg) between PRISm and spirometric COPD (rg=0.62, p<0.001) was observed, and genetic correlation with type 2 diabetes (rg=0.12, p=0.007). Phenome-wide association studies showed that 18 of 22 signals were associated with diabetic traits and seven with blood pressure traits. CONCLUSION: This is the first GWAS to successfully identify SNPs associated with PRISm. Four of the signals, rs7652391 (nearest gene MECOM), rs9431040 (HLX), rs62018863 (TMEM114) and rs185937162 (HLA-B), have not been described in association with lung function before, demonstrating the utility of using different lung function phenotypes in GWAS. Genetic factors associated with PRISm are strongly correlated with risk of both other lung diseases and extrapulmonary comorbidity.


Subject(s)
Diabetes Mellitus, Type 2 , Pulmonary Disease, Chronic Obstructive , Humans , Genome-Wide Association Study , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics , Diabetes Mellitus, Type 2/genetics , Lung , Forced Expiratory Volume/genetics , Spirometry , Vital Capacity
7.
Environ Health Perspect ; 131(12): 126001, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38048101

ABSTRACT

BACKGROUND: The prenatal environment influences lifetime health; epigenetic mechanisms likely predominate. In 2016, the first international consortium paper on cigarette smoking during pregnancy and offspring DNA methylation identified extensive, reproducible exposure signals. This finding raised expectations for epigenome-wide association studies (EWAS) of other exposures. OBJECTIVE: We review the current state-of-the-science for DNA methylation associations across prenatal exposures in humans and provide future recommendations. METHODS: We reviewed 134 prenatal environmental EWAS of DNA methylation in newborns, focusing on 51 epidemiological studies with meta-analysis or replication testing. Exposures spanned cigarette smoking, alcohol consumption, air pollution, dietary factors, psychosocial stress, metals, other chemicals, and other exogenous factors. Of the reproducible DNA methylation signatures, we examined implementation as exposure biomarkers. RESULTS: Only 19 (14%) of these prenatal EWAS were conducted in cohorts of 1,000 or more individuals, reflecting the still early stage of the field. To date, the largest perinatal EWAS sample size was 6,685 participants. For comparison, the most recent genome-wide association study for birth weight included more than 300,000 individuals. Replication, at some level, was successful with exposures to cigarette smoking, folate, dietary glycemic index, particulate matter with aerodynamic diameter <10µm and <2.5µm, nitrogen dioxide, mercury, cadmium, arsenic, electronic waste, PFAS, and DDT. Reproducible effects of a more limited set of prenatal exposures (smoking, folate) enabled robust methylation biomarker creation. DISCUSSION: Current evidence demonstrates the scientific premise for reproducible DNA methylation exposure signatures. Better powered EWAS could identify signatures across many exposures and enable comprehensive biomarker development. Whether methylation biomarkers of exposures themselves cause health effects remains unclear. We expect that larger EWAS with enhanced coverage of epigenome and exposome, along with improved single-cell technologies and evolving methods for integrative multi-omics analyses and causal inference, will expand mechanistic understanding of causal links between environmental exposures, the epigenome, and health outcomes throughout the life course. https://doi.org/10.1289/EHP12956.


Subject(s)
Epigenome , Genome-Wide Association Study , Female , Humans , Infant, Newborn , Pregnancy , Biomarkers , Environmental Exposure , Folic Acid , Meta-Analysis as Topic
8.
Epigenomics ; 15(22): 1179-1193, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38018434

ABSTRACT

Background: Prenatal caffeine exposure may influence offspring health via DNA methylation, but no large studies have tested this. Materials & methods: Epigenome-wide association studies and differentially methylated regions in cord blood (450k or EPIC Illumina arrays) were meta-analyzed across six European cohorts (n = 3725). Differential methylation related to self-reported caffeine intake (mg/day) from coffee, tea and cola was compared with assess whether caffeine is driving effects. Results: One CpG site (cg19370043, PRRX1) was associated with caffeine and another (cg14591243, STAG1) with cola intake. A total of 12-22 differentially methylated regions were detected with limited overlap across caffeinated beverages. Conclusion: We found little evidence to support an intrauterine effect of caffeine on offspring DNA methylation. Statistical power limitations may have impacted our findings.


Current guidelines recommend pregnant women to limit caffeine intake to less than 200 mg daily, even though there is no clear proof of its effects on human development. A biological explanation for how exposure to caffeine during pregnancy influences development would help clarify if recommended limits are justified. An epigenetic mechanism, called DNA methylation (DNAm), has been suggested as a potential biological explanation for how caffeine intake during pregnancy influences health development. DNAm can switch genes 'on' or 'off' in response to environmental influences and therefore act as a bridge between genes and the environment. Studies have found that smoking during pregnancy is connected to over 6000 changes in DNAm at birth, with lasting effects into adulthood. To explore the link between caffeine intake during pregnancy and DNAm at birth, we analyzed data from 3725 mother­child pairs living in different European countries. We looked at effects from coffee, tea and cola intake during pregnancy on children's DNAm at birth. We found one change in DNAm to be connected to total caffeine and another to cola consumption during pregnancy. These few connections do not provide convincing evidence that caffeine intake during pregnancy impacts children's DNAm at birth. However, because mothers in our study consumed little caffeine, it is possible that results would be different in studies with participants consuming high amounts of caffeine during pregnancy. Potentially, our study did not include enough people to find very small changes in DNAm that are connected to caffeine consumption during pregnancy.


Subject(s)
Caffeine , DNA Methylation , Pregnancy , Female , Humans , Caffeine/adverse effects , Epigenome , Fetal Blood , Homeodomain Proteins
9.
medRxiv ; 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37662364

ABSTRACT

Background: Farm work entails a heterogeneous mixture of exposures that vary considerably across farms and farmers. Farm work is associated with various health outcomes, both adverse and beneficial. One mechanism by which farming exposures can impact health is through the microbiome, including the indoor built environment microbiome. It is unknown how individual occupational exposures shape the microbial composition in workers' homes. Objectives: We investigated associations between farm work activities, including specific tasks and pesticide use, and the indoor microbiome in the homes of 468 male farmers. Methods: Participants were licensed pesticide applicators, mostly farmers, enrolled in the Agricultural Lung Health Study from 2008-2011. Vacuumed dust from participants' bedrooms underwent whole-genome shotgun sequencing for indoor microbiome assessment. Using questionnaire data, we evaluated 6 farm work tasks (processing of either hay, silage, animal feed, fertilizer, or soy/grains, and cleaning grain bins) and 19 pesticide ingredients currently used in the past year, plus 7 persistent banned pesticide ingredients ever used. Results: All 6 work tasks were associated with increased within-sample microbial diversity, with a positive dose-response for the sum of tasks (p=0.001). All tasks were associated with altered overall microbial compositions (weighted UniFrac p=0.001) and with higher abundance of specific microbes, including soil-based microbes such as Haloterrigena. Among the 19 pesticides, only current use of glyphosate and past use of lindane were associated with increased within-sample diversity (p=0.02-0.04). Ten currently used pesticides and all 7 banned pesticides were associated with altered microbial composition (p=0.001-0.04). Six pesticides were associated with differential abundance of certain microbes. Discussion: Specific farm activities and exposures can impact the dust microbiome inside homes. Our work suggests that occupational farm exposures could impact the health of workers and their families through modifying the indoor environment, specifically the microbial composition of house dust, offering possible future intervention targets.

10.
Am J Epidemiol ; 192(10): 1637-1646, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37392093

ABSTRACT

We examined the associations between lung function and incident dementia and cognitive decline in 12,688 participants in the ARIC Study who provided lung function measurements in 1990-1992. Cognitive tests were administered up to 7 times, and dementia was ascertained through 2019. We used shared parameter models to jointly fit proportional hazard models and linear mixed-effect models to estimate lung-function-associated dementia rate and cognitive change, respectively. Higher forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) were associated with reduced dementia (n = 2,452 persons developed dementia); hazard ratios per 1-L increase in FEV1 and FVC were 0.79 (95% confidence interval (CI): 0.71, 0.89) and 0.81 (95% CI: 0.74, 0.89), respectively. Each 1-L increase in FEV1 and FVC was associated with a 0.08-standard deviation (SD) (95% CI: 0.05, 0.12) and a 0.05-SD (95% CI: 0.02, 0.07) attenuation of 30-year cognitive decline, respectively. A 1% increase in FEV1/FVC ratio was associated with 0.008-SD (95% CI: 0.004, 0.012) less cognitive decline. We observed statistical interaction between FEV1 and FVC, suggesting that cognitive declines depended on values of specific FEV1 and FVC (as compared with FEV1, FVC, or FEV1/FVC ratio models that suggested linear incremental associations). Our findings may have important implications for reducing the burden of cognitive decline that is attributable to environmental exposures and associated lung function impairment.


Subject(s)
Atherosclerosis , Cognitive Dysfunction , Dementia , Humans , Lung , Forced Expiratory Volume , Atherosclerosis/epidemiology , Cognitive Dysfunction/epidemiology , Dementia/epidemiology , Dementia/etiology
11.
Front Microbiol ; 14: 1202194, 2023.
Article in English | MEDLINE | ID: mdl-37415812

ABSTRACT

Indoor home dust microbial communities, important contributors to human health, are shaped by environmental factors, including farm-related exposures. Advanced metagenomic whole genome shotgun sequencing (WGS) improves detection and characterization of microbiota in the indoor built-environment dust microbiome, compared to conventional 16S rRNA amplicon sequencing (16S). We hypothesized that the improved characterization of indoor dust microbial communities by WGS will enhance detection of exposure-outcome associations. The objective of this study was to identify novel associations of environmental exposures with the dust microbiome from the homes of 781 farmers and farm spouses enrolled in the Agricultural Lung Health Study. We examined various farm-related exposures, including living on a farm, crop versus animal production, and type of animal production, as well as non-farm exposures, including home cleanliness and indoor pets. We assessed the association of the exposures on within-sample alpha diversity and between-sample beta diversity, and the differential abundance of specific microbes by exposure. Results were compared to previous findings using 16S. We found most farm exposures were significantly positively associated with both alpha and beta diversity. Many microbes exhibited differential abundance related to farm exposures, mainly in the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. The identification of novel differential taxa associated with farming at the genera level, including Rhodococcus, Bifidobacterium, Corynebacterium, and Pseudomonas, was a benefit of WGS compared to 16S. Our findings indicate that characterization of dust microbiota, an important component of the indoor environment relevant to human health, is heavily influenced by sequencing techniques. WGS is a powerful tool to survey the microbial community that provides novel insights on the impact of environmental exposures on indoor dust microbiota. These findings can inform the design of future studies in environmental health.

12.
medRxiv ; 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37090637

ABSTRACT

Indoor home dust microbial communities, important contributors to human health outcomes, are shaped by environmental factors, including farm-related exposures. Detection and characterization of microbiota are influenced by sequencing methodology; however, it is unknown if advanced metagenomic whole genome shotgun sequencing (WGS) can detect novel associations between environmental exposures and the indoor built-environment dust microbiome, compared to conventional 16S rRNA amplicon sequencing (16S). This study aimed to better depict indoor dust microbial communities using WGS to investigate novel associations with environmental risk factors from the homes of 781 farmers and farm spouses enrolled in the Agricultural Lung Health Study. We examined various farm-related exposures, including living on a farm, crop versus animal production, and type of animal production, as well as non-farm exposures, including home cleanliness and indoor pets. We assessed the association of the exposures on within-sample alpha diversity and between-sample beta diversity, and the differential abundance of specific microbes by exposure. Results were compared to previous findings using 16S. We found most farm exposures were significantly positively associated with both alpha and beta diversity. Many microbes exhibited differential abundance related to farm exposures, mainly in the phyla Actinobacteria, Bacteroidetes, Firmicutes , and Proteobacteria . The identification of novel differential taxa associated with farming at the genera level, including Rhodococcus, Bifidobacterium, Corynebacterium , and Pseudomonas , was a benefit of WGS compared to 16S. Our findings indicate that characterization of dust microbiota, an important component of the indoor environment relevant to human health, is heavily influenced by sequencing techniques. WGS is a powerful tool to survey the microbial community that provides novel insights on the impact of environmental exposures on indoor dust microbiota, and should be an important consideration in designing future studies in environmental health.

13.
Epigenetics ; 18(1): 2202835, 2023 12.
Article in English | MEDLINE | ID: mdl-37093107

ABSTRACT

Circulating vitamin B12 concentrations during pregnancy are associated with offspring health. Foetal DNA methylation changes could underlie these associations. Within the Pregnancy And Childhood Epigenetics Consortium, we meta-analysed epigenome-wide associations of circulating vitamin B12 concentrations in mothers during pregnancy (n = 2,420) or cord blood (n = 1,029), with cord blood DNA methylation. Maternal and newborn vitamin B12 concentrations were associated with DNA methylation at 109 and 7 CpGs, respectively (False Discovery Rate P-value <0.05). Persistent associations with DNA methylation in the peripheral blood of up to 482 children aged 4-10 y were observed for 40.7% of CpGs associated with maternal vitamin B12 and 57.1% of CpGs associated with newborn vitamin B12. Of the CpGs identified in the maternal meta-analyses, 4.6% were associated with either birth weight or gestational age in a previous work. For the newborn meta-analysis, this was the case for 14.3% of the identified CpGs. Also, of the CpGs identified in the newborn meta-analysis, 14.3% and 28.6%, respectively, were associated with childhood cognitive skills and nonverbal IQ. Of the 109 CpGs associated with maternal vitamin B12, 18.3% were associated with nearby gene expression. In this study, we showed that maternal and newborn vitamin B12 concentrations are associated with DNA methylation at multiple CpGs in offspring blood (PFDR<0.05). Whether this differential DNA methylation underlies associations of vitamin B12 concentrations with child health outcomes, such as birth weight, gestational age, and childhood cognition, should be further examined in future studies.


Subject(s)
DNA Methylation , Epigenome , Infant, Newborn , Pregnancy , Child , Female , Humans , Birth Weight/genetics , Vitamin B 12/metabolism , Epigenesis, Genetic , Fetal Blood/metabolism
14.
Epigenomics ; 15(1): 39-52, 2023 01.
Article in English | MEDLINE | ID: mdl-36974632

ABSTRACT

Aim: To perform an epigenome-wide association study (EWAS) of serum folate in maternal blood. Methods: Cross-ancestry (Europeans = 302, South Asians = 161) and ancestry-specific EWAS in the EPIPREG cohort were performed, followed by methyl quantitative trait loci analysis and association with cardiometabolic phenotypes. Replication was attempted using maternal folate intake and blood methylation data from the MoBa study and verified if the findings were significant in a previous EWAS of maternal serum folate in cord blood. Results & conclusion: cg19888088 (cross-ancestry) in EBF3, cg01952260 (Europeans) and cg07077240 (South Asians) in HERC3 were associated with serum folate. cg19888088 and cg01952260 were associated with diastolic blood pressure. cg07077240 was associated with variants in CASC15. The findings were not replicated and were not significant in cord blood.


Subject(s)
Epigenesis, Genetic , Epigenome , DNA Methylation , Fetal Blood/metabolism , Leukocytes , Folic Acid/metabolism , Genome-Wide Association Study/methods
15.
Mol Psychiatry ; 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36899042

ABSTRACT

Prenatal maternal stressful life events are associated with adverse neurodevelopmental outcomes in offspring. Biological mechanisms underlying these associations are largely unknown, but DNA methylation likely plays a role. This meta-analysis included twelve non-overlapping cohorts from ten independent longitudinal studies (N = 5,496) within the international Pregnancy and Childhood Epigenetics consortium to examine maternal stressful life events during pregnancy and DNA methylation in cord blood. Children whose mothers reported higher levels of cumulative maternal stressful life events during pregnancy exhibited differential methylation of cg26579032 in ALKBH3. Stressor-specific domains of conflict with family/friends, abuse (physical, sexual, and emotional), and death of a close friend/relative were also associated with differential methylation of CpGs in APTX, MyD88, and both UHRF1 and SDCCAG8, respectively; these genes are implicated in neurodegeneration, immune and cellular functions, regulation of global methylation levels, metabolism, and schizophrenia risk. Thus, differences in DNA methylation at these loci may provide novel insights into potential mechanisms of neurodevelopment in offspring.

16.
J Allergy Clin Immunol Glob ; 1(4): 248-256, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36569583

ABSTRACT

Background: Several studies conducted in Europe have suggested a protective association between early-life farming exposures and childhood eczema or atopic dermatitis; few studies have examined associations in adults. Objectives: To investigate associations between early-life exposures and eczema among 3217 adult farmers and farm spouses (mean age 62.8 years) in a case-control study nested within an US agricultural cohort. Methods: We used sampling-weighted logistic regression to estimate odds ratios (ORs) and 95% confidence intervals (95%CIs) for associations between early-life exposures and self-reported doctor-diagnosed eczema (273 cases) and polytomous logistic regression to estimate ORs (95%CIs) for a 4-level outcome combining information on eczema and atopy (specific IgE≥0.35). Additionally, we explored genetic and gene-environment associations with eczema. Results: Although early-life farming exposures were not associated with eczema overall, several early-life exposures were associated with a reduced risk of having both eczema and atopy. Notably, results suggest stronger protective associations among individuals with both eczema and atopy than among those with either atopy alone or eczema alone. For example, ORs (95%CIs) for having a mother who did farm work while pregnant were 1.01 (0.60-1.69) for eczema alone and 0.80 (0.65-0.99) for atopy alone, but 0.54 (0.33-0.80) for having both eczema and atopy. A genetic risk score based on previously identified atopic dermatitis variants was strongly positively associated with eczema, and interaction testing suggested protective effects of several early-life farming exposures only in individuals at lower genetic risk. Conclusions: In utero and childhood farming exposures are associated with decreased odds of having eczema with atopy in adults.

17.
J Alzheimers Dis ; 90(3): 1073-1083, 2022.
Article in English | MEDLINE | ID: mdl-36213999

ABSTRACT

BACKGROUND: Previous studies suggest poor pulmonary function is associated with increased burden of cerebral white matter hyperintensities and brain atrophy among elderly individuals, but the results are inconsistent. OBJECTIVE: To study the cross-sectional associations of pulmonary function with structural brain variables. METHODS: Data from six large community-based samples (N = 11,091) were analyzed. Spirometric measurements were standardized with respect to age, sex, height, and ethnicity using reference equations of the Global Lung Function Initiative. Associations of forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and their ratio FEV1/FVC with brain volume, gray matter volume, hippocampal volume, and volume of white matter hyperintensities were investigated using multivariable linear regressions for each study separately and then combined using random-effect meta-analyses. RESULTS: FEV1 and FVC were positively associated with brain volume, gray matter volume, and hippocampal volume, and negatively associated with white matter hyperintensities volume after multiple testing correction, with little heterogeneity present between the studies. For instance, an increase of FVC by one unit was associated with 3.5 ml higher brain volume (95% CI: [2.2, 4.9]). In contrast, results for FEV1/FVC were more heterogeneous across studies, with significant positive associations with brain volume, gray matter volume, and hippocampal volume, but not white matter hyperintensities volume. Associations of brain variables with both FEV1 and FVC were consistently stronger than with FEV1/FVC, specifically with brain volume and white matter hyperintensities volume. CONCLUSION: In cross-sectional analyses, worse pulmonary function is associated with smaller brain volumes and higher white matter hyperintensities burden.


Subject(s)
Lung , Magnetic Resonance Imaging , Humans , Aged , Forced Expiratory Volume , Cross-Sectional Studies , Lung/diagnostic imaging , Brain/diagnostic imaging
18.
Occup Environ Med ; 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35940867

ABSTRACT

BACKGROUND: Farms represent complex environments for respiratory exposures including hays, grains and pesticides. Little is known about the impact of these exposures on women's respiratory health. We evaluated the association of farm exposures with allergic and non-allergic wheeze among women in the Agricultural Health Study, a study of farmers and their spouses based in Iowa and North Carolina. METHODS: We used self-reported data (2005-2010) on current use (≤12 months) of 15 pesticides (selected based on frequency of use) and occupational farm activities from 20 164 women. We defined allergic wheeze as reporting wheeze and doctor-diagnosed hay fever (7%) and non-allergic wheeze as wheeze but not hay fever (8%) in the past 12 months. Using polytomous logistic regression, we evaluated associations of wheeze subtypes with pesticides and other farm exposures (eg, raising farm animals) using no wheeze/hay fever as the referent, adjusting for age, body mass index, state, current asthma, glyphosate use and smoking. RESULTS: Current use of any pesticide, reported by 7% of women, was associated with both allergic (OR: 1.36, 95% CI: 1.10 to 1.67) and non-allergic (OR: 1.25, 95% CI: 1.04 to 1.51) wheeze. Four pesticides were associated with at least one wheeze subtype: glyphosate, with both wheeze subtypes; diazinon and fly spray with only allergic wheeze; carbaryl with only non-allergic wheeze. Working weekly with mouldy hay was associated with allergic (OR: 1.88, 95% CI: 1.26 to 2.80) and non-allergic wheeze (OR: 1.69, 95% CI: 1.18 to 2.42). CONCLUSION: Use of specific pesticides and certain farm activities may contribute to wheeze among farm women.

19.
Environ Health Perspect ; 130(8): 87008, 2022 08.
Article in English | MEDLINE | ID: mdl-36006053

ABSTRACT

BACKGROUND: In low- and middle-income countries, burning biomass indoors for cooking or heating has been associated with poorer lung function. In high-income countries, wood, a form of biomass, is commonly used for heating in rural areas with increasing prevalence. However, in these settings the potential impact of chronic indoor woodsmoke exposure on pulmonary function is little studied. OBJECTIVE: We evaluated the association of residential wood burning with pulmonary function in case-control study of asthma nested within a U.S. rural cohort. METHODS: Using sample weighted multivariable linear regression, we estimated associations between some and frequent wood burning, both relative to no exposure, in relation to forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), their ratio (FEV1/FVC), and fractional exhaled nitric oxide (FeNO). We examined effect modification by smoking or asthma status. RESULTS: Among all participants and within smoking groups, wood burning was not appreciably related to pulmonary function. However, in individuals with asthma (n=1,083), frequent wood burning was significantly associated with lower FEV1 [ß: -164mL; 95% confidence interval (CI): -261, -66mL], FVC (ß: -125mL; 95% CI: -230, -20mL), and FEV1/FVC (ß: -2%; 95% CI: -4, -0.4%), whereas no appreciable association was seen in individuals without asthma (n=1,732). These differences in association by asthma were statistically significant for FEV1 (pinteraction=0.0044) and FEV1/FVC (pinteraction=0.049). Frequent wood burning was also associated with higher FeNO levels in all individuals (n=2,598; ß: 0.1 ln(ppb); 95% CI: 0.02, 0.2), but associations did not differ by asthma or smoking status. DISCUSSION: Frequent exposure to residential wood burning was associated with a measure of airway inflammation (FeNO) among all individuals and with lower pulmonary function among individuals with asthma. This group may wish to reduce wood burning or consider using air filtration devices. https://doi.org/10.1289/EHP10734.


Subject(s)
Asthma , Wood , Asthma/epidemiology , Forced Expiratory Volume , Humans , Lung , Vital Capacity
20.
Clin Epigenetics ; 14(1): 83, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35790973

ABSTRACT

BACKGROUND: Sleep is important for healthy functioning in children. Numerous genetic and environmental factors, from conception onwards, may influence this phenotype. Epigenetic mechanisms such as DNA methylation have been proposed to underlie variation in sleep or may be an early-life marker of sleep disturbances. We examined if DNA methylation at birth or in school age is associated with parent-reported and actigraphy-estimated sleep outcomes in children. METHODS: We meta-analysed epigenome-wide association study results. DNA methylation was measured from cord blood at birth in 11 cohorts and from peripheral blood in children (4-13 years) in 8 cohorts. Outcomes included parent-reported sleep duration, sleep initiation and fragmentation problems, and actigraphy-estimated sleep duration, sleep onset latency and wake-after-sleep-onset duration. RESULTS: We found no associations between DNA methylation at birth and parent-reported sleep duration (n = 3658), initiation problems (n = 2504), or fragmentation (n = 1681) (p values above cut-off 4.0 × 10-8). Lower methylation at cg24815001 and cg02753354 at birth was associated with longer actigraphy-estimated sleep duration (p = 3.31 × 10-8, n = 577) and sleep onset latency (p = 8.8 × 10-9, n = 580), respectively. DNA methylation in childhood was not cross-sectionally associated with any sleep outcomes (n = 716-2539). CONCLUSION: DNA methylation, at birth or in childhood, was not associated with parent-reported sleep. Associations observed with objectively measured sleep outcomes could be studied further if additional data sets become available.


Subject(s)
DNA Methylation , Sleep Wake Disorders , Epigenesis, Genetic , Epigenome , Humans , Sleep/genetics , Sleep Wake Disorders/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...